Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 402
Filtrar
1.
Physiol Plant ; 176(3): e14328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38695265

RESUMEN

While endophytic fungi offer promising avenues for bolstering plant resilience against abiotic stressors, the molecular mechanisms behind this biofortification remain largely unknown. This study employed a multifaceted approach, combining plant physiology, proteomic, metabolomic, and targeted hormonal analyses to illuminate the early response of Brassica napus to Acremonium alternatum during the nascent stages of their interaction. Notably, under optimal growth conditions, the initial reaction to fungus was relatively subtle, with no visible alterations in plant phenotype and only minor impacts on the proteome and metabolome. Interestingly, the identified proteins associated with the Acremonium response included TUDOR 1, Annexin D4, and a plastidic K+ efflux antiporter, hinting at potential processes that could counter abiotic stressors, particularly salt stress. Subsequent experiments validated this hypothesis, showcasing significantly enhanced growth in Acremonium-inoculated plants under salt stress. Molecular analyses revealed a profound impact on the plant's proteome, with over 50% of salt stress response proteins remaining unaffected in inoculated plants. Acremonium modulated ribosomal proteins, increased abundance of photosynthetic proteins, enhanced ROS metabolism, accumulation of V-ATPase, altered abundances of various metabolic enzymes, and possibly promoted abscisic acid signaling. Subsequent analyses validated the accumulation of this hormone and its enhanced signaling. Collectively, these findings indicate that Acremonium promotes salt tolerance by orchestrating abscisic acid signaling, priming the plant's antioxidant system, as evidenced by the accumulation of ROS-scavenging metabolites and alterations in ROS metabolism, leading to lowered ROS levels and enhanced photosynthesis. Additionally, it modulates ion sequestration through V-ATPase accumulation, potentially contributing to the observed decrease in chloride content.


Asunto(s)
Acremonium , Homeostasis , Oxidación-Reducción , Reguladores del Crecimiento de las Plantas , Tolerancia a la Sal , Transducción de Señal , Acremonium/metabolismo , Acremonium/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Tolerancia a la Sal/fisiología , Brassica napus/microbiología , Brassica napus/metabolismo , Brassica napus/fisiología , Brassica napus/efectos de los fármacos , Estrés Salino/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Fotosíntesis
2.
Biotechnol J ; 19(3): e2300683, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38479986

RESUMEN

Acremonium chrysogenum is the major industrial producer of cephalosporin C (CPC), which is used as raw material for the production of significant cephalosporin antibiotics. Due to the lack of diverse promoter elements, the development of metabolic engineering transformation is relatively slow, resulting in a limited improvement on CPC production. In this study, based on the analysis of the transcriptome profile, 27 candidate promoters were selected to drive the expression of the reporter genes. The promoter activities of this library ranged from 0.0075 to 101 times of the control promoter PAngpdA . Simultaneously, a rapid screening method for potential bidirectional promoters was developed and 4 strong bidirectional promoters from 27 candidate options were identified and validated. Finally, the Golden Gate method was employed to combine promoter modules from the library with various target genes. Through a mixed transformation and screening process, high-yielding strains AG-6, AG-18, and AG-41 were identified, exhibiting an increase in CPC production of 30%, 35%, and 29%, respectively, compared to the control strain Ac-∆axl2:: eGFP. Therefore, the utilization of this promoter library offers a broader range of synthetic biology toolkits for the genetic engineering transformation of A. chrysogenum, thus establishing a solid foundation for the precise regulation of gene expression.


Asunto(s)
Acremonium , Cefalosporinas , Cefalosporinas/metabolismo , Transcriptoma , Acremonium/genética , Acremonium/metabolismo , Ingeniería Metabólica
3.
Biochem Biophys Res Commun ; 677: 119-125, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37573766

RESUMEN

Sesquiterpene synthases convert farnesyl diphosphate into various sesquiterpenes, which find wide applications in the food, cosmetics and pharmaceutical industries. Although numerous putative sesquiterpene synthases have been identified in fungal genomes, many lack biochemical characterization. In this study, we identified a putative terpene synthase AcTPS3 from Acremonium chrysogenum. Through sequence analysis and in vitro enzyme assay, AcTPS3 was identified as a sesquiterpene synthase. To obtain sufficient product for NMR testing, a metabolic engineered Saccharomyces cerevisiae was constructed to overproduce the product of AcTPS3. The major product of AcTPS3 was identified as (+)-cubenene (55.46%) by GC-MS and NMR. Thus, AcTPS3 was confirmed as (+)-cubenene synthase, which is the first report of (+)-cubenene synthase. The optimized S. cerevisiae strain achieved a biosynthesis titer of 597.3 mg/L, the highest reported for (+)-cubenene synthesis.


Asunto(s)
Acremonium , Transferasas Alquil y Aril , Sesquiterpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/química , Acremonium/genética , Acremonium/metabolismo , Genoma Fúngico , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo
4.
Environ Monit Assess ; 195(3): 395, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36780023

RESUMEN

In the present work, the potential of Cephalosporium strain in degrading the pre-treated (ultraviolet irradiation followed by nitric acid treatment) low-density polyethylene and high-density polyethylene films was investigated. Our observations revealed a significant weight reduction of 24.53 ± 0.73% and 18.22 ± 0.31% in pre-treated low-density polyethylene and high-density polyethylene films respectively, after 56 days of incubation with the Cephalosporium strain. Changes in the physicochemical properties of the mineral salt medium (MSM) were studied to assess the extent of biodegradation. The pH of the MSM decreased gradually during the incubation period, whereas its total dissolved solids and conductivity values increased steadily. Fourier transform infrared spectroscopy (FTIR) indicated the formation of hydroxyl and C = C groups in biodegraded low-density polyethylene films, while in the case of biodegraded high-density polyethylene films it indicated the [Formula: see text]CH2 stretching. Furthermore, the thermogravimetric analysis (TGA) revealed an enhancement in the thermal stabilities of both the LDPE and HDPE films post the biodegradation. Modifications in the polymer surface morphologies after UV irradiation, chemical treatment, and biodegradation steps were visualized via scanning electron microscopy (SEM) analysis. All our observations confirm the ability of the Cephalosporium strain in biodegrading the pre-treated LDPE and HDPE films.


Asunto(s)
Acremonium , Polietileno , Polietileno/química , Acremonium/metabolismo , Monitoreo del Ambiente , Biodegradación Ambiental , Espectroscopía Infrarroja por Transformada de Fourier
5.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498951

RESUMEN

The addition of exogenous polyamines increases the production of antibiotic cephalosporin C (CPC) in Acremonium chrysogenum high-yielding (HY) strain during fermentation on a complex medium. However, the molecular basis of this phenomenon is still unknown. In the current study, we developed a special synthetic medium on which we revealed the opposite effect of polyamines. The addition of 1,3-diaminopropane resulted in an increase in the yield of CPC by 12-15%. However, the addition of spermidine resulted in a decrease in the yield of CPC by 14-15% and accumulation of its metabolic pathway precursor, deacetylcephalosporin C (DAC); the total amount of cephems (DAC and CPC) was the same as after the addition of DAP. This indicates that spermidine, but not 1,3-diaminopropane, affects the final stage of CPC biosynthesis, associated with the acetylation of its precursor. In both cases, upregulation of biosynthetic genes from beta-lactam BGCs occurred at the same level as compared to the control; expression of transport genes was at the control level. The opposite effect may be due to the fact that N1-acetylation is much more efficient during spermidine catabolism than for 1,3-diaminopropane. The addition of spermidine, but not 1,3-diaminopropane, depleted the pool of acetyl coenzyme A by more than two-fold compared to control, which could lead to the accumulation of DAC.


Asunto(s)
Acremonium , Espermidina , Espermidina/metabolismo , Acremonium/genética , Acremonium/metabolismo , Cefalosporinas/metabolismo
6.
Appl Microbiol Biotechnol ; 106(19-20): 6413-6426, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36114850

RESUMEN

Cephalosporins are currently the most widely used antibiotics in clinical practice. The main strain used for the industrial production cephalosporin C (CPC) is Acremonium chrysogenum. CPC has the advantages of possessing a broad antibacterial spectrum and strong antibacterial activity. However, the yield and titer of cephalosporins obtained from A. chrysogenum are much lower than penicillin, which is also a ß-lactam antibiotic produced by Penicillium chrysogenum. Molecular biology research into A. chrysogenum has focused on gene editing technologies, multi-omics research which has provided information on the differences between high- and low-yield strains, and metabolic engineering involving different functional genetic modifications and hierarchical network regulation to understand strain characteristics. Furthermore, optimization of the fermentation process is also reviewed as it provides the optimal environment to realize the full potential of strains. Combining rational design to control the metabolic network, high-throughput screening to improve the efficiency of obtaining high-performance strains, and real-time detection and controlling in the fermentation process will become the focus of future research in A. chrysogenum. This minireview provides a holistic and in-depth analysis of high-yield mechanisms and improves our understanding of the industrial value of A. chrysogenum. KEY POINTS: • Review of the advances in A. chrysogenum characteristics improvement and process optimization • Elucidate the molecular bases of the mechanisms that control cephalosporin C biosynthesis and gene expression in A. chrysogenum • The future development trend of A. chrysogenum to meet industrial needs.


Asunto(s)
Acremonium , Acremonium/genética , Acremonium/metabolismo , Antibacterianos/metabolismo , Cefalosporinas , Fermentación , Penicilinas
7.
Arch Microbiol ; 204(8): 489, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35835894

RESUMEN

Petroleum-based polymers are not susceptible to microorganisms because of its high molecular weight. Acid treatments convert the polymers into a more oxidized form having low molecular weight. The present in-vitro degradation study focuses on the potential of Cephalosporium species to degrade acid-treated polystyrene (PS) and low-density polyethylene (LDPE) films. A weight loss of around 12% and 13% was achieved for PS and LDPE films respectively in eight weeks of treatment with Cephalosporium species. Fourier transform infrared spectroscopy analysis showed the formation of hydroxyl and carbonyl groups in nitric acid treated PS and LDPE films, respectively. Scanning electron microscopy indicated modifications in the surface morphology of PS and LDPE films after chemical and microbial treatment. An increase in crystallinity of pre-treated polymer samples was observed after fungal treatment. The observations of present study confirmed the enzymatic deterioration and assimilation of pre-treated PS and LDPE samples by the microbial species.


Asunto(s)
Acremonium , Polietileno , Acremonium/metabolismo , Biodegradación Ambiental , Ácido Nítrico , Polietileno/metabolismo , Poliestirenos/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
8.
J Biotechnol ; 347: 26-39, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-34954288

RESUMEN

Cephalosporin C (CPC) production is often accompanied by a typical morphological differentiation of Acremonium chrysogenum, involving the fragmentation of its hyphae into arthrospores. The type I integral plasma membrane protein Axl2 is a central component of the bud site selection system (BSSS), which was identified as the regulatory factor involved in the hyphal septation process and arthrospore formation. Using CRISPR/Cas9 technology and homologous recombination (HR), we inserted an egfp donor DNA sequence into the Acaxl2 locus, causing the generation of the deletion strain Ac-ΔAcaxl2:eGFP from Acremonium chrysogenum FC3-5-23, the industrial producer of CPC. The mycelial morphology of the deletion strain Ac-ΔAcaxl2:eGFP was mainly composed of arthrospores with a characteristic diameter of 2-8 µm, which increased from 75% at 48 h to 90% at 72 h post culture and were maintained until the end of the fermentation process. However, the deletion strain showed accelerated production of CPC, and the final titer was 5573 µg/ml, which was nearly three times higher than that of the control strain FC3-5-23. The up-regulation of genes related to the biosynthesis gene cluster in Ac-ΔAcaxl2:eGFP, especially the "late" genes, was one reason why its CPC production was higher than that of the original strain. Furthermore, compared with FC3-5-23, the more significant increase of genes involved in the BSSS (Acbud3 and Acbud4) in Ac-ΔAcaxl2:eGFP in the late stage of fermentation, may be responsible for this increase in arthrospore formation. Similarily, the transcription of the regulatory factors AcFKH1 and CPCR1 were also markedly increased at this time and may be the factors responsible for the regulation of CPC synthesis. These results indicated that Acaxl2 plays an important role in both arthrospore formation and CPC production, strongly implicating these regulatory factors as having pivotal links between mycelial morphology and secondary metabolite production in high-yielding A. chrysogenum. To the opposite, the axl2 gene knockout of wild strain CGMCC 3.3795 did not significantly influence the CPC production, which reflected the complexity of the secondary metabolic process and the differences in the function of axl2 gene in high- and low-yielding strains.


Asunto(s)
Acremonium , Acremonium/genética , Acremonium/metabolismo , Cefalosporinas/metabolismo , Hifa/metabolismo
9.
J Nat Prod ; 84(11): 2990-3000, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34781681

RESUMEN

Six new 16-residue peptaibols, acremopeptaibols A-F (1-6), along with five known compounds, were isolated from the cultures of the sponge-associated fungus Acremonium sp. IMB18-086 grown in the presence of the autoclaved bacterium Pseudomonas aeruginosa on solid rice medium. The peptaibol sequences were established based on comprehensive analysis of 1D and 2D NMR spectroscopic data in conjunction with HRESIMS/MS experiments. The configurations of the amino acid residues were determined by advanced Marfey's analysis. Compounds 1-6 feature the lack of the highly conserved Thr6 and Hyp10 residues in comparison with other members of the SF3 subfamily peptaibols. A plausible biosynthetic pathway of compounds 1-6 was proposed on the basis of genomic analysis. Compounds 1, 5, 7, and 10 exhibited significant antimicrobial activity against Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis, and Candida albicans. Compounds 7-10 showed potent cytotoxicities against the A549 and/or HepG2 cancer cell lines.


Asunto(s)
Acremonium/metabolismo , Peptaiboles/aislamiento & purificación , Poríferos/microbiología , Pseudomonas aeruginosa/metabolismo , Células A549 , Animales , Vías Biosintéticas , Células Hep G2 , Humanos , Peptaiboles/química , Peptaiboles/farmacología
10.
Cell Biol Int ; 45(11): 2380-2390, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34288235

RESUMEN

Small cell lung cancer (SCLC) was defined as a recalcitrant cancer, and novel therapies are urgently needed. Marine natural products (MNPs) may bring continuing hope for treatment of SCLC. In this study, 3-bromoascochlorin (BAS), an MNP isolated from the coral-derived fungus Acremonium sclerotigenum GXIMD 02501, was primarily screened out with antiproliferative activity towards SCLC cell lines. Then western blot analysis (WB) and flow cytometry were conducted, and we found BAS could induce the apoptosis of H446 and H69AR cells. Besides, BAS could suppress the invasion and migration of H446. In an SCLC xenograft mice model, BAS inhibited the growth of tumor without affecting the body weight of mice. Finally, the underlying mechanisms were preliminarily explored. According to the results of RNA-seq, reverse transcription-quantitative polymerase chain reaction, and WB, our results revealed that BAS exerted antitumor activity via inhibiting mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinases (ERK) pathway. Collectively, these results indicated that BAS can be used as a promising compound for the treatment of human SCLC.


Asunto(s)
Acremonium/metabolismo , Productos Biológicos/farmacología , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Neoplasias Pulmonares/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Desnudos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Glycoconj J ; 38(4): 509-516, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34146213

RESUMEN

Physiological role of a core fucose specific lectin from Cephalosporium curvulum isolated from mycotic keratitis patient in mediating pathogenesis was reported earlier. CSL has opposite effects on HCECs, at the initiation of infection when lectin concentration is low, CSL induces proinflammatory response and at higher concentration it inhibits growth as the infection progresses. Here we delineate detailed mechanism of opposing effects of CSL by confirming the binding of CSL and anti TLR 2 and 4 antibodies to TLRs 2 and 4 purified from HCECs using Galectin-3 Sepharose 4B column. Further, the expression of signaling proteins were monitored by Western blotting and apoptosis assay. At concentration of 0.3 µg/ml, CSL induced the activation of TLR-2,-4 and adapter protein MyD88. CSL also induced the expression of transcription factors NFkB, C-Jun and proinflammatory cytokines like interleukins -6 and -8 essential in maintaining cell proliferation. In contrast at higher concentrations i.e. 5 µg/ml CSL induces apoptotic effect as evidenced by increase in early and late apoptotic population as demonstrated by Annexin V-PI assay. Western blotting revealed that CSL treated HCECs at higher concentration lead to MyD88 dependent expression of apoptotic proteins like FADD, Caspase -8 and -3. All these results are in line with and substantiate our earlier results that indeed CSL is involved in mediating host pathogen interactions by interacting with cell surface TLRs, activating downstream signaling pathways leading to pathogenesis. Findings are of clinical significance in developing carbohydrate based therapeutic strategy to control infection and the disease.


Asunto(s)
Acremonium/metabolismo , Células Epiteliales/efectos de los fármacos , Epitelio Corneal/citología , Queratitis/microbiología , Lectinas/toxicidad , Apoptosis , Línea Celular , Proliferación Celular , Humanos , Queratitis/patología , Lectinas/inmunología , Factor 88 de Diferenciación Mieloide
12.
J Am Chem Soc ; 143(15): 5605-5609, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33834778

RESUMEN

Hirsutellones are fungal natural products containing a macrocyclic para-cyclophane connected to a decahydrofluorene ring system. We have elucidated the biosynthetic pathway for pyrrocidine B (3) and GKK1032 A2 (4). Two small hypothetical proteins, an oxidoreductase and a lipocalin-like protein, function cooperatively in the oxidative cyclization of the cyclophane, while an additional hypothetical protein in the pyrrocidine pathway catalyzes the exo-specific cycloaddition to form the cis-fused decahydrofluorene.


Asunto(s)
Productos Biológicos/metabolismo , Hidrocarburos Aromáticos con Puentes/metabolismo , Hongos/química , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Pirrolidinonas/metabolismo , Acremonium/química , Acremonium/metabolismo , Productos Biológicos/química , Hidrocarburos Aromáticos con Puentes/química , Catálisis , Reacción de Cicloadición , Hongos/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/química , Hypocreales/química , Hypocreales/metabolismo , Conformación Molecular , Oxidación-Reducción , Oxidorreductasas/metabolismo , Pirrolidinonas/química , Estereoisomerismo
13.
J Ind Microbiol Biotechnol ; 48(1-2)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33693885

RESUMEN

This study evaluates peptidoglycan hydrolysis by a microbial muramidase from the fungus Acremonium alcalophilum in vitro and in the gastrointestinal tract of broiler chickens. Peptidoglycan used for in vitro studies was derived from 5 gram-positive chicken gut isolate type strains. In vitro peptidoglycan hydrolysis was studied by three approaches: (a) helium ion microscopy to identify visual phenotypes of hydrolysis, (b) reducing end assay to quantify solubilization of peptidoglycan fragments, and (c) mass spectroscopy to estimate relative abundances of soluble substrates and reaction products. Visual effects of peptidoglycan hydrolysis could be observed by helium ion microscopy and the increase in abundance of soluble peptidoglycan due to hydrolysis was quantified by a reducing end assay. Mass spectroscopy confirmed the release of hydrolysis products and identified muropeptides from the five different peptidoglycan sources. Peptidoglycan hydrolysis in chicken crop, jejunum, and caecum samples was measured by quantifying the total and soluble muramic acid content. A significant increase in the proportion of the soluble muramic acid was observed in all three segments upon inclusion of the microbial muramidase in the diet.


Asunto(s)
Acremonium/metabolismo , Pollos/metabolismo , Tracto Gastrointestinal/metabolismo , Muramidasa/metabolismo , Peptidoglicano/metabolismo , Animales , Hidrólisis , Masculino , Peptidoglicano/química , Peptidoglicano/aislamiento & purificación
14.
Arch Microbiol ; 203(5): 2183-2191, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33620524

RESUMEN

The present study approaches the capability of Cephalosporium strain NCIM 1251 to degrade pre-treated polystyrene films. Polystyrene was initially treated with UV for the introduction of oxygen molecules in pure polystyrene samples. UV treatment inserts aliphatic ketones functional group in polystyrene whereas it created C-C stretching after chemical treatment in UV-treated polystyrene as analyzed by Fourier-transform infrared spectroscopy (FTIR). The gravimetric study confirmed a decline in the weight of the pre-treated polystyrene by 20.62 ± 1.47% after 8 weeks of the incubation period. pH, total dissolved solids (TDS), and conductivity of mineral salt media were correlated with the extent of biodegradation. Treatment with UV and acid increased the thermal stability of pure polystyrene, whereas thermal stability decreased in pre-treated polystyrene after incubation with Cephalosporium strain NCIM 1251 as studied by Thermogravimetric analysis (TGA). Scanning Electron Microscopy (SEM) analysis observed revisions in the morphology and surface patterns in pre-treated polystyrene after inoculation with Cephalosporium strain NCIM 1251. The observed findings suggest that the Cephalosporium strain NCIM 1251 could be efficient for the decomposition of pre-treated polystyrene.


Asunto(s)
Acremonium/metabolismo , Biodegradación Ambiental , Poliestirenos/metabolismo , Rayos Ultravioleta , Cetonas/química , Microscopía Electrónica de Rastreo , Poliestirenos/química , Espectroscopía Infrarroja por Transformada de Fourier
15.
PLoS One ; 15(8): e0238452, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32866191

RESUMEN

The filamentous fungus Acremonium chrysogenum is the main industrial producer of cephalosporin C (CPC), one of the major precursors for manufacturing of cephalosporin antibiotics. The plasma membrane H+-ATPase (PMA) plays a key role in numerous fungal physiological processes. Previously we observed a decrease of PMA activity in A. chrysogenum overproducing strain RNCM 408D (HY) as compared to the level the wild-type strain A. chrysogenum ATCC 11550. Here we report the relationship between PMA activity and CPC biosynthesis in A. chrysogenum strains. The elevation of PMA activity in HY strain through overexpression of PMA1 from Saccharomyces cerevisiae, under the control of the constitutive gpdA promoter from Aspergillus nidulans, results in a 1.2 to 10-fold decrease in CPC production, shift in beta-lactam intermediates content, and is accompanied by the decrease in cef genes expression in the fermentation process; the characteristic colony morphology on agar media is also changed. The level of PMA activity in A. chrysogenum HY OE::PMA1 strains has been increased by 50-100%, up to the level observed in WT strain, and was interrelated with ATP consumption; the more PMA activity is elevated, the more ATP level is depleted. The reduced PMA activity in A. chrysogenum HY strain may be one of the selected events during classical strain improvement, aimed at elevating the ATP content available for CPC production.


Asunto(s)
Acremonium/metabolismo , Membrana Celular/metabolismo , Cefalosporinas/biosíntesis , Cefalosporinas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Adenosina Trifosfatasas/metabolismo , Medios de Cultivo/metabolismo , Fermentación/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , beta-Lactamas/metabolismo
16.
Appl Microbiol Biotechnol ; 104(4): 1773-1783, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31900551

RESUMEN

In an earlier work on lovastatin production by Aspergillus terreus, we found that reactive oxygen species (ROS) concentration increased to high levels precisely at the start of the production phase (idiophase) and that these levels were sustained during all idiophase. Moreover, it was shown that ROS regulate lovastatin biosynthesis. ROS regulation has also been reported for aflatoxins. It has been suggested that, due to their antioxidant activity, aflatoxins are regulated and synthesized like a second line of defense against oxidative stress. To study the possible ROS regulation of other industrially important secondary metabolites, we analyzed the relationship between ROS and penicillin biosynthesis by Penicillium chrysogenum and cephalosporin biosynthesis by Acremonium chrysogenum. Results revealed a similar ROS accumulation in idiophase in penicillin and cephalosporin fermentations. Moreover, when intracellular ROS concentrations were decreased by the addition of antioxidants to the cultures, penicillin and cephalosporin production were drastically reduced. When intracellular ROS were increased by the addition of exogenous ROS (H2O2) to the cultures, proportional increments in penicillin and cephalosporin biosyntheses were obtained. It was also shown that lovastatin, penicillin, and cephalosporin are not antioxidants. Taken together, our results provide evidence that ROS regulation is a general mechanism controlling secondary metabolism in fungi.


Asunto(s)
Acremonium/metabolismo , Cefalosporinas/biosíntesis , Penicilinas/biosíntesis , Penicillium chrysogenum/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Acremonium/efectos de los fármacos , Vías Biosintéticas , Fermentación , Regulación Fúngica de la Expresión Génica , Peróxido de Hidrógeno/farmacología , Penicillium chrysogenum/efectos de los fármacos , Especies Reactivas de Oxígeno/farmacología , Metabolismo Secundario
17.
Talanta ; 208: 120361, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31816810

RESUMEN

Routine microbial identification by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) has been achieved based on the spectra of ribosomal proteins with molecular masses between 2000 and 20000Da. It is a rapid, cost-effective, and simple method to characterize different species of microorganisms. But for some subspecies of molds, there are high similarities between their spectra in 2000-20000Da, it makes them indistinguishable in this mass range. Based on the specialized metabolite production, there are obvious differences between the high resolution spectra of the same samples in 600-2000Da. It allows the rapid discrimination of these microbial subspecies. The ability of the method to discriminate microbial subspecies was demonstrated by characterizing three different Aspergillus niger strains. Furthermore, this approach has been applied to discriminate two different Acremonium alternatum strains which were collected from mildew plants. It demonstrated the applicability of the method to the actual samples. The high resolution MS in the range of 600-2000Da was presented as a complementary approach for the routine method in 2000-20000Da. The molds could be identified into species-level group by the spectra between 2000 and 20000Da and the strains within each group could be further discriminated based on differences in metabolites. The spectra between 2000 and 20000Da and the spectra between 600 and 2000Da were obtained from the same samples, which extracted with the same method. There is no need of additional pre-processing to obtain the high resolution spectra. It potentially provides a powerful tool for the fast and accurate identification of microbial subspecies.


Asunto(s)
Acremonium/clasificación , Aspergillus niger/clasificación , Proteínas Ribosómicas/análisis , Proteínas Ribosómicas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Acremonium/metabolismo , Aspergillus niger/metabolismo
19.
Steroids ; 149: 108427, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31228485

RESUMEN

Medroxyprogesterone acetate (MPA) (1) has been transformed by two filamentous fungi, including Absidia griseolla var. igachii and Acremonium chrysogenum, into 11α-hydroxy-medroxyprogesterone acetate (2) as the major metabolite. The structure of the product was identified by different spectroscopic methods (1D- and 2D-NMR, EI-MS, and elemental analysis). Moreover, a time course study determined by HPLC showed 63% and 48% yields for the metabolite by using the two mentioned fungi, respectively. Finally, the effect of the temperature and concentration of the substrate were investigated, which the optimal fermentation conditions were found to be 25 °C with a substrate concentration of 0.1% (w/v). This study reports for the first time the production of 11α-hydroxy-medroxyprogesterone acetate as a fungal biotransformation product.


Asunto(s)
Absidia/metabolismo , Acremonium/metabolismo , Acetato de Medroxiprogesterona/química , Acetato de Medroxiprogesterona/metabolismo , Biotransformación , Hidroxilación
20.
Proc Natl Acad Sci U S A ; 116(17): 8269-8274, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30952781

RESUMEN

Ascofuranone (AF) and ascochlorin (AC) are meroterpenoids produced by various filamentous fungi, including Acremonium egyptiacum (synonym: Acremonium sclerotigenum), and exhibit diverse physiological activities. In particular, AF is a promising drug candidate against African trypanosomiasis and a potential anticancer lead compound. These compounds are supposedly biosynthesized through farnesylation of orsellinic acid, but the details have not been established. In this study, we present all of the reactions and responsible genes for AF and AC biosyntheses in A. egyptiacum, identified by heterologous expression, in vitro reconstruction, and gene deletion experiments with the aid of a genome-wide differential expression analysis. Both pathways share the common precursor, ilicicolin A epoxide, which is processed by the membrane-bound terpene cyclase (TPC) AscF in AC biosynthesis. AF biosynthesis branches from the precursor by hydroxylation at C-16 by the P450 monooxygenase AscH, followed by cyclization by a membrane-bound TPC AscI. All genes required for AC biosynthesis (ascABCDEFG) and a transcriptional factor (ascR) form a functional gene cluster, whereas those involved in the late steps of AF biosynthesis (ascHIJ) are present in another distantly located cluster. AF is therefore a rare example of fungal secondary metabolites requiring multilocus biosynthetic clusters, which are likely to be controlled by the single regulator, AscR. Finally, we achieved the selective production of AF in A. egyptiacum by genetically blocking the AC biosynthetic pathway; further manipulation of the strain will lead to the cost-effective mass production required for the clinical use of AF.


Asunto(s)
Acremonium , Alquenos , Fenoles , Sesquiterpenos , Acremonium/enzimología , Acremonium/genética , Acremonium/metabolismo , Alquenos/química , Alquenos/metabolismo , Vías Biosintéticas/fisiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Modelos Moleculares , Familia de Multigenes/genética , Fenoles/química , Fenoles/metabolismo , Sesquiterpenos/química , Sesquiterpenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...